Integration host factor (IHF) dictates the structure of polyamine-DNA condensates: implications for the role of IHF in the compaction of bacterial chromatin.

نویسندگان

  • Tumpa Sarkar
  • Anton S Petrov
  • Jason R Vitko
  • Catherine T Santai
  • Stephen C Harvey
  • Ishita Mukerji
  • Nicholas V Hud
چکیده

Integration host factor (IHF), a nucleoid-associated protein in bacterial cells, is implicated in a number of chromosomal functions including DNA compaction. IHF binds to all duplex DNA with micromolar affinity and at sequence-specific sites with much higher affinity. IHF is known to induce sharp bends in the helical axis of DNA in both modes of binding, but the role of IHF in controlling DNA condensation within bacterial cells has remained undetermined. Here we demonstrate that IHF influences the morphology of DNA condensed by polyamines in vitro. In the absence of IHF, spermidine and spermine condense DNA primarily into toroidal structures, whereas in the presence of IHF, polyamines condense DNA primarily into rodlike structures. Computer simulations of DNA condensation in the absence and presence of IHF binding lend support to our model in which DNA bending proteins, such as IHF and HU, promote the condensation of DNA into rodlike structures by providing the free energy necessary to bend DNA at the ends of linear bundles of condensed DNA. We propose that a common function of IHF and HU in bacterial cells is to facilitate DNA organization in the nucleoid by the introduction of sharp bends in chromosomal DNA.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Physical Organization of DNA by Multiple Non-Specific DNA-Binding Modes of Integration Host Factor (IHF)

The integration host factor (IHF) is an abundant nucleoid-associated protein and an essential co-factor for phage λ site-specific recombination and gene regulation in E. coli. Introduction of a sharp DNA kink at specific cognate sites is critical for these functions. Interestingly, the intracellular concentration of IHF is much higher than the concentration needed for site-specific interactions...

متن کامل

Compaction of single DNA molecules induced by binding of integration host factor (IHF).

We studied the interaction between the integration host factor (IHF), a major nucleoid-associated protein in bacteria, and single DNA molecules. Force-extension measurements of lambda DNA and an analysis of the Brownian motion of small beads tethered to a surface by single short DNA molecules, in equilibrium with an IHF solution, indicate that: (i) the DNA-IHF complex retains a random, although...

متن کامل

Indirect recognition in sequence-specific DNA binding by Escherichia coli integration host factor: the role of DNA deformation energy.

Integration host factor (IHF) is a bacterial histone-like protein whose primary biological role is to condense the bacterial nucleoid and to constrain DNA supercoils. It does so by binding in a sequence-independent manner throughout the genome. However, unlike other structurally related bacterial histone-like proteins, IHF has evolved a sequence-dependent, high affinity DNA-binding motif. The h...

متن کامل

Integration Host Factor Assembly at the Cohesive End Site of the Bacteriophage Lambda Genome: Implications for Viral DNA Packaging and Bacterial Gene Regulation

Integration host factor (IHF) is an Escherichia coli protein involved in (i) condensation of the bacterial nucleoid and (ii) regulation of a variety of cellular functions. In its regulatory role, IHF binds to a specific sequence to introduce a strong bend into the DNA; this provides a duplex architecture conducive to the assembly of site-specific nucleoprotein complexes. Alternatively, the prot...

متن کامل

In vitro selection of integration host factor binding sites.

Integration host factor (IHF) is a bacterial protein that binds and severely bends a specific DNA target. IHF binding sites are approximately 30 to 35 bp long and are apparently divided into two domains. While the 3' domain is conserved, the 5' domain is degenerate but is typically AT rich. As a result of physical constraints that IHF must impose on DNA in order to bind, it is believed that thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochemistry

دوره 48 4  شماره 

صفحات  -

تاریخ انتشار 2009